skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bukowski, Belén"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification. 
    more » « less
  2. Abstract AimThe Neotropics constitute the most biodiverse region of the world, yet its patterns of diversification and speciation differ among Neotropical areas and are not equally well understood. Particularly, avian evolutionary processes are understudied in the open habitats of temperate South America, where the role of glacial cycles is not clear. We analysed the evolutionary history of a Neotropical widespread bird species as a case study to evaluate its continental‐scale patterns and processes of diversification, with a focus on Patagonia. LocationOpen habitats of the Neotropics. TaxonVanellus chilensis(Aves, Charadriiformes). MethodsWe obtained reduced representation genomic and mitochondrial data from the four subspecies ofV. chilensisto perform a phylogenetic/phylogeographical analysis and study the evolutionary history of the species. We complemented these analyses with the study of vocalizations, a reproductive signal in birds. ResultsThe initial diversification event withinV. chilensis, approximately 600,000 years ago, split a Patagonian lineage from one containing individuals from the rest of the Neotropics. We found considerable gene flow between these two lineages and a contact zone in northern Patagonia, and showed that genomic admixture extends to northwestern Argentina. Shallower divergence was detected between the two non‐Patagonian subspecies, which are separated by the Amazon River. Vocalizations were significantly different between the two main lineages and were intermediate in their temporal and frequency characteristics in the contact zone. Main ConclusionsPatagonian populations ofV. chilensisare clearly differentiated from those of the rest of the Neotropics, possibly as a consequence of Pleistocene glaciations. A secondary contact zone in northern Patagonia with extensive gene flow among lineages appears to be the consequence of post‐glacial, northward expansion of the Patagonian populations. Future analyses focused on the dynamics of the contact zone will allow us to establish whether the species continues to diverge or is homogenizing. 
    more » « less